CARBIOS announces the publication of a new article entitled “An engineered enzyme embedded into PLA1 to make self-biodegradable plastic” in Nature, widely regarded as the most influential scientific journal, and co-authored with its longstanding collaborator, the Toulouse Biotechnology Institute (TBI)2. Enzyme-embedded PLA plastic can fully and rapidly degrade in home-compost or methanization conditions. The article describes the optimization process used to achieve an engineered enzyme able to withstand the 170°C3 temperature required to introduce it in molten state PLA during the plastic production process. The new enzyme-embedded material is proven to fully distintegrate and biodegrade at a much faster rate than the 26-week home-compost certification requirement and is also shown to help produce more biomethane, another source of waste recovery. Moreover, the material remains intact over long-term storage, the enzyme only being activated under composting or methanization conditions, ensuring compatibility with commercial PLA-based applications, for example, flexible packaging (such as sauce packets and wrappers) and short-life items (such as food containers, yogurt pots and coffee capsules).
CARBIOS Active: CARBIOS’ commercial biodegradation solution is the direct result of the unique know-how developed by its enzymology experts
CARBIOS’ expertise in enzyme optimization contributed to the development of CARBIOS Active’s formula and industrial process. Integrated directly into the plastic material transformation process without any modification to production lines, the encapsulated enzyme CARBIOS Active enables the creation of a new generation of PLA products that are 100% compostable at ambient temperature, while ensuring quality compost, free from toxicity and microplastics. CARBIOS Active therefore opens up new biodegradation possibilites for PLA at ambient temperatures, including domestic composting conditions. A production line is already up and running at CARBIOS headquarters in Clermont-Ferrand, France, which can produce 2,500 tons/year of CARBIOS Active (required for the equivalent of 50,000 tons/year of enzyme-embedded PLA).
''A publication in Nature is an especially proud moment for all the contributing teams, notably recognition from peers in the scientific community. Developing an efficient enzyme that can withstand the 170°C needed to introduce it into PLA is an outstanding scientific feat! Our previous article published in Nature in 2020 was pivotal in bringing our PET biorecycling technology to the world stage. We are very excited by the enhanced visibility of CARBIOS’ unique biodegradation technology brought by this publication, as it offers a practical and scalable approach to various industrial PLA-based packaging applications." - Alain Marty, Chief Scientific Officer of Carbios.